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ABSTRACT

We tighten previous upper limits on gamma-ray burst repetition by analyzing the angular power spec-
trum of the BATSE 3B catalog of 1122 bursts. At 95% confidence, we find that no more than 2% of all
observed bursts can be labeled as repeaters, even if no sources are observed to repeat more than once. If
a fraction f of all observed bursts can be labeled as repeaters that are observed to burst v times each,
then all models with (v - 1)f> 0.05 are ruled out at 99% confidence, as compared to the best previous
99% limit (v - l)f_> 0.27. At 95% confidence, our new limit is (v - l)f_> 0.02. Thus, even a cluster of six
events from a single source would have caused excess power above that present in the 3B catalog. We
conclude that the current BATSE data are consistent with no repetition of classical gamma-ray bursts
and that any repeater model is severely constrained by the near-perfect isotropy of their angular dis-
tribution.

Subject headings: gamma rays: bursts -- methods: statistical

1. INTRODUCTION
The origin of cosmic y-ray bursts (GRBs) is not known,

and their distance scale has not been established. The

angular isotropy of GRBs provides an important clue
which has generated a "great debate" about the question
whether GRBs are of Galactic or cosmological origin (e.g.,
Briggs 1995; Fishman 1995; Fishman & Meegan 1995;
Hartmann 1995; Lamb 1995; Paczyfiski 1995). While
cosmological models usually invoke singular events, such as
the merger of two compact objects (e.g., Narayan, Paczyfi-
ski, & Piran 1992; M6szaros & Rees 1993), Galactic
models currently under consideration require multiple out-
bursts from each source. Recurrence in the framework of

cosmological models could occur due to lensing, but the
frequency of such events should be very small (e.g., Nemi-
roff et al. 1994). Detection of a significant fraction of repeat-
ing GRBs would argue against a cosmological origin and
favor a Galactic (halo) origin. It would definitely exclude
cosmological models in which the source is destroyed.

To satisfy the isotropy constraint, a Galactic halo must
be very large in order to minimize the dipole due to the
solar offset from the Galactic center. The current multipole

limits (Briggs et al. 1996; Tegmark et al. 19961 require
Galactocentric shells with typical radii ~200 kpc. On the
other hand, halos that are too large will yield an excess of
bursts toward M31, which is not observed le.g., Hakkila el
al. 1994, 1995: Briggs et al. 19961. Because of these twin
constraints, most halo models invoke a limiting sampling
distance of about 3110kpc for the BATSE bursts.

Currently, the only surviving Galactic model invokes
bursts that are produced by high-velocity pulsars IHVPst
born in the vicinity of the disk streaming out into the halo
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with velocities ~ 103 km s- 1 (Li & Dermer 1992; Duncan &
Thompson 1992; Duncan, Li, & Thompson 1993; Woosicy
1993; Li, Duncan, & Thompson 1994; Colgate & Leonard
1994, 1996; Li & Duncan 1996; Bulik & Lamb 1996; Pod-
siadlowski, Rees, & Ruderman 1995; Woosley & Heranl
1996j. The recent upward revision of radio pulsar velocities
(Lyne & Lorimer 1994) provides some support and motiva-
tion for such a scenario.

Radio pulsars are born in the Galaxy at the rate ol
roughly one pulsar every 100 years (e.g., Narayan &
Ostriker 1990). This is consistent with recent estimates ol
the Galactic supernova rate [(2.5+_0.5} x l0 -2 yr 1.
Tammann, L6ffler, & Schr6der 1994] if a significant frac-
tion of them leave a black hole instead of a neutron star. A

typical value for the fraction of pulsars with velocities > 103
km s-' is _ 10% [Lyne & Lorimer 1994; Frail, Goss, &
Whiteoak 1994). However, not every HVP may become a
GRB source if additional selection criteria, such as particu-
lar magnetic field strengths, must be applied. The fraction ol
pulsars with sufficient energy, if rotational momentum is tl_e
energy source, is probably much smaller than unity
(Hartmann & Narayan 19961. On the other hand, BATSE
has been detecting GRBs at the rate of approximately one
per day. After correcting for Earth blockage and temporal
gaps, the inferred all-sky GRB rate at the BATSE sensitivity
level is _ 10 3 yr- _. The comparison of the pulsar birthrate
with the high observed rate of bursts implies that burst
sources must repeat in the ttVP scenario {Hartmann &
Narayan 1996; Lamb 1995; Podsiadlowski el al. 19951.
Whilc the actual detection of burst recurrence is perhaps
still avoidable, the paramcter range of realistic halo models
clearly encourages the search for repealers in the data. ()n
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the other hand, the leading cosmological scenario of
merging compact objects would be in serious trouble if even
a small number of GRBs could convincingly be shown to
originate from the same source.

Do classical GRBs repeat, and if yes, can we determine
their recurrence pattern? The search for recurrence of clas-
sical GRBs (in this work, we exclude the exciting class of
soft gamma repeaters, which were recently reviewed by
Kouveliotou 1994) has a long tradition (Mazets et al. 1981 ;
Schaefer & Cline 1985; Atteia et al. 1985, 1987). Though
somewhat model dependent, the distribution of burst loca-
tions studied by these authors suggests a lower limit to the
GRB recurrence time of ~ 10 yr. Interest in this topic was
revived by Quashnock & Lamb (1993), who found evidence
for repetition in the BATSE IB data set (Fishman et al.
1994) using the nearest neighbor (NN) statistic (e.g., Scott &
Tout 1989).

Recurrence, even in a single case, would be immediately
obvious if we had perfect locations. The locations provided
by BATSE, while numerous, are imperfect, and consequent-
ly a statistical analysis is required to demonstrate or limit
the presence of repeaters. The positions in the first BATSE
catalog had a minimum uncertainty of _4 ° due to system-
atics (Fishman et al. 1994). The repetition analysis of
Quashnock & Lamb has been controversial. For example,

Narayan & Piran (1993, 1994) used an apparent excess of
burst pairs with ~i8ff _ angular separation ("antipodal
bursts") to argue against the repeater hypothesis derived
from the small-angle NN excess, but Quashnock & Lamb
(1994) argued that real physical (Galactic)anisotropies in
the catalog are responsible for the positive antipodal corre-
lations.

In contrast to BATSE, COMPTEL and EGRET can
localize bursts to ~ 1_, but the event rate of these detectors is

very small. However, the recent near coincidence of
COMPTEL bursts GRB 930704 and GRB 940301 (Kippen
et al. 1995a, b) suggests repetition, because in 3 years of
operation such a coincidence had only a 3% chance prob-
ability. The most recent compilation of 27 GRB positions
observed with COMPTEL (Kippen et al. 1996) did not
yield another pair of coincident bursts, implying a reduced
significance of the first pair.

While most studies focused on projected GRB positions,
it is clear that there could also be a clustering effect in the
time domain. This aspect was investigated first by Wang &

Lingenfelter (1994, 1995a, b), who also found evidence for
repetitions.

Given the importance of these findings for burst models,
confirmation in subsequent samples is essential. Angular
correlation function studies as well as nearest neighbor
methods applied to the 2B sample did not confirm the
earlier claims and instead found the data to be consistent

with no repetition (Blumenthal, Hartman, & Linder 1994;
Meegan et al. 1995). The small-scale excess was reduced,
and the antipodal excess also went away (Hartmann et al.
1994). However, the 2B data suffered from the problem of
large data gaps in time due to the failure of the tape record-
ers aboard the Compton Gamma Ray Observatory (CGRO).
The resulting lower exposure to bursts obviously reduces
our ability to detect recurrent events. Taking these effects
into account, Meegan et al. (1995) constrain the total frac-
tion of repeaters among the 585 observed 2B bursts to

f_< 20%. This limit is based on simple repeater pairs in all
cases. If each repeating source produces more than two

detectable events, the corresponding limit would be tighter.
The data also do not show evidence for enhanced clustering
in time/space (Brainerd et al. 1995), although different sta-
tistical measures, such as the Mantel-Haenszei test, provide
marginal evidence for joint temporal and angular clustering
with a timescale of 4-5 days (Petrosian & Efron 1995).

A comparison of the nearest neighbor method and the
angular correlation function method shows that stronger
constraints are obtained from the latter (Meegan et al. 1995;
Brainerd 1996). These findings contradict earlier statements
that the NN statistic is the superior method for studies of
small-scale clustering (Lamb, Quashnock, & Graziani
1994). Many authors have introduced new statistical tech-
niques; most have concluded that there is either weak or no
evidence for burst repetition (Hartmann et al. 1995; Bennett
& Rhie 1996; Efron & Petrosian 1995; Hurley et al. 1994).

To make further progress in the analysis of angular dis-
tribution data, it is necessary to remove the two most
important obstacles in this analysis; data gaps and poor
positions. The most recent set of BATSE data (the 3B
catalog; Meegan et al. 1996) is free of data gaps other than
those induced by the South Atlantic Anomaly passages, and
a major effort to improve the positioning algorithm
(Pendleton et al. 1995) has reduced the systematic error to
176. This sample of bursts thus provides a solid base for
tests of the repeater hypothesis. Analyses of the 3B data
using the standard tools of NN statistic and angular corre-
lation functions (Meegan et al. 1996) confirmed the conclu-
sions derived from the 2B data: classical GRBs have not

been observed to repeat. The same conclusion was reached
in a study of 3B data using the matched pair statistic
(Bennett & Rhie 1996b). While supporting the null hypothe-
sis, these studies did not significantly improve the limits on
the repeater fraction. It is the purpose of this paper to intro-
duce a new statistical method that provides significantly
more statistical power than the standard tools. We apply
the method to the 3B catalog and derive improved limits on
the repeater fraction.

The remainder of this paper is organized as follows: in § 2
we present our repeater statistic, and in § 3 we apply it to
the 3B data set and discuss the results.

2. METHOD

As in Meegan et al. (1995), we find it convenient to work
with a two-parameter family of repeater models. These

models are specified by the parametersfand v, wherefis the
fraction of all observed bursts that can be labeled as repea-
ters and v is the average number of observed events per
source observed to repeat. Our comparison of these models
with the data will proceed as follows:

I. We select a method of reducing an entire data set into
a single number R, a number which is sensitive to the type
of burst clustering that repetition would produce. We chose
the sign so that the more evidence there is for repetition in
the data set, the larger R will be.

2. For fixed values off and v, we compute the probability
distribution of R by making Monte Carlo simulations of
mock BATSE 3B catalogs.

3. We compute the observed value of R, denoted Roh_,
from the real BATSE 3B catalog.

4. Combining the results of the two previous steps, we
obtain the function /_J_ v), defined as the probability that
R _< Rob_ given that the true parameter values are f and v.
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For instance, if p(f, v)= 5%, then we would expect to
observe as low an R-value as we did, by chance, only 5% of
the time, and conclude that the model (f, v) is ruled out
with 95% confidence.

5. By repeating this analysis for a grid of points in
parameter space and making a contour plot of p(f, v), we
obtain our final results, shown in Figure 2.

Clearly, the success of this approach depends crucially on
the choice of the statistic R. Any choice whatsoever will of
course give statistically valid results as long as the mock
catalogs and the real data are treated in the same way, but
poor choices of R will not allow good discrimination
between repeating and nonrepeating models. The best
choice of R is clearly that which allows us to rule out as
many incorrect models as possible, i.e., in statistics jargon,
that which gives our statistical test the maximum power.
Many repeater statistics have already been employed in the
literature, as discussed in § 1. Currently, the standard tests
use the nearest neighbor test or the two-point correlation
function. These are both good choices, as they are sensitive
to small-scale clustering of the type that repetition pro-
duces. Here we will use another choice, which we will argue
is even better.

2.1. The Total Power Statistic

In Tegmark et al. (1996, hereafter THBM96), a method
was presented for computing the angular power spectrum
Cl of gamma-ray bursts in the presence of the position
errors of BATSE. It was found that in terms of the power
spectrum, burst repetition has a very simple signature: the
power at all multipoles l is increased by the same amount.
Therefore, a logical measure of burst repetition would be
the sum (or, apart from an irrelevant multiplicative
constant, the average) of the power in all muir)poles, R =
y._o=0 C_, i.e., the total power. However, the position errors
make the estimates of high multipoles very noisy, and in
THBM96 it was found that the shot noise error bars on the

power spectrum estimates explode for l > 70. To be useful,
R should be fairly insensitive to noise, so we clearly want to
give less weight to the Ct with large error bars, i.e., with
large/-values. With this in mind, we propose the following
repeater statistic:

R - la,ml 2 . (1)
I=0 m=-I

As was shown in THBM96, the minimum variance estimate
of the spherical harmonic coefficent a_,, when faced with
location uncertainties is

Ct,r a =-- N_ff Yim(/)x0':)dt"_ • (21

Here x is the smoothed burst map, plotted in THBM96,
which is simply a sky map of all bursts smeared out by their

position uncertainties:
N

x(r) = E Bk(r}' (31

k-I

where in the approximation of a Gauss)an beam function,

' (10_)Bkff) = 2ha----7exp - 5 _ ' (4)

where 0 is the angle between i and _k, the position of burst k.
Up to an irrelevant additive constant (the shot noise btr a

75c

discussed in THBM96), lat,, I2 is a measure of the power (?l

Just as in THBM96,

N

N_ ff ---- _ exp [-a2l(l + 1)] , i5
lt=l

where ak is the uncertainty in the position of burst k aac
gives the effective number of bursts that are well enough
localized to contribute information about Cv In THBM96
the error bars on Ct where found to scale as I/N_ tf, so the.
weights (N_n/N) 2 in our definition of R have the desired
property of suppressing the influence of the noisy high-
part of the power spectrum, since N_ ff ---, 0 as I _ o0.

2.2. A Faster Way to Compute the Total Power

Since the quantity R is a measure of the total fluctuati,_i
power in the burst distribution, which is a rather naturai
quantity, one may ask if there is a simpler way of computing
it which circumvents time-consuming calculations of large
numbers of spherical harmonics Y_,,. Fortunately, th_
answer to this question turns out to be yes. Substitutin_
equation (2) into equation (1) and using the spherical har-
monic identity

lxlml2 = Ix0:) 12dr'/ i6
1=0 m=-i

(the spherical version of Parseval's theorem), we obtain lh_
simple and useful result

R= Jxff) 2df_. (7

Equation (7) provides an intuitive way of understandiag
how the statistic R works. If all bursts are well separated, sc
that their respective Gaussians hardly overlap, then R wili
simply be a sum of separate contributions from each bursl
and will be independent of the exact burst positions. If clus-
tering is present, however, then we obtain "constructivt
interference" where two Gaussians overlap, and since the
integrand in equation (7) is squared, we find a larger contri-
bution than if they did not overlap. Also, since the Gauss
ians B k are normalized as probability distributions (the3
integrate to unity), their peak values are larger for well-
localized bursts. This means that overlaps conribute mort
to the sum if they involve a well-localized burst (with
small a0.

2.3. A Still Faster Way

We found that, 4n factors aside, the R-statistic is simpl3
the mean squared amplitude of the smoothed burst map
Since we wish to make many thousands of Monte Carl_
simulations to obtain accurate estimates of the probabilitb
distributions of step 2, it is desirable to further accelerate
the procedure of computing R. Substituting equation 13
into equation (7), we obtain

i=l j=l

In the approximation that trk <{ 1 rad .,_ 60' (which is qmtt
an accurate approximation, as typical values are a fc_
degrees), the integral reduces to that of the product of tw_
Gaussians in the fiat two-dimensional plane and can Ix
done analytically. This leaves us with the handy result

1 _ Z exp[ 1 0° I/Ca?R=_ 9(a_+o])_]/ ' + °2)' i9
i:l j=l
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where 0ij- cos-_ (ii'i), i.e., the angle between the two
bursts. Finally, since replacing our statistic R by a mono-
tonic function f(R) (for instance, rescaling R and subtrac-
ting off a constant) will in no way change its ability to
discriminate between models, let us redefine R to give
numbers of a convenient magnitude. If there is no clustering

and the total area ,-, _i tr_ covered by all the error circles is
so small that substantial overlap is unlikely, then the sum in

equation (9) will be dominated by the "diagonal" terms
with i=j and reduce to R _, (1/4n)_i tr,-2, an expression
which is completely independent of the burst locations Pl.
Dividing by this quantity and disposing of uninteresting
additive and multiplicative constants, we thus redefine our
R-statistic as

- l 0.2.',, ,]/R=(,=_ aZ2) i_l;_',exp[ 2 a2+'tr 2) (a2

This is the expression that we use in our calculations. Apart
from an irrelevant factor of 4, it is merely the ratio between
the off-diagonal (i _ j) and diagonal (i = j) elements in the
sum in equation (9). It will clearly always be nonnegative,
and in the absence of clustering, it will approach zero if the
location errors tr_do.

The position uncertainties A0 quoted in the BATSE 3B
catalog are defined as the radius of the 1 a circle, i.e., of the
circle that contains err (l/x/2) _ 68% of the probability.
Thus, in the limit ak '_ 1, the conversion between A0 and tr
is

{ [a = -2In l-err _-0.66. (11)
A0

Note that the values of A0 quoted in the BATSE 3B catalog
do not include the systematic error contribution of 1°.6,
which is to be added to the quoted values in quadrature.

In defining our statistic R above, we have omitted a few
elements that were used in THBM96, for instance the spa-

tially varying exposure function h and the Fisher beam
function. It should be emphasized that despite these omis-
sions and the various approximations made (that (7k ._ 60 '_,
etc.), our statistical statements will be 100% exact. This is
because, as mentioned above, we are free to define the sta-
tistic R however we want, as long as we make no approx-
imations when generating the Monte Carlo catalogs and
compute R in exactly the same way from these and from the
real data. The only real constraint is that if we make R
depart too much from the exact measure of the total power,

it may no longer be as good a measure of clustering, and its
ability to reject incorrect models will be weakened.

2.4. The Mock Catalogs

According to the model, the N = 1122 bursts were
caused by (I -J)N nonrepeating objects (rounded to the
nearest integer) and fN/v repeating objects that burst v
times each. Therefore, we generate the mock BATSE 3B

catalogs as follows:

1. The (1 -f)N + fN/v objects are distributed randomly
across the sky, in a completely uncorrelated fashion, but
with the point density modulated by the exposure function
h(_) as described below.

2. Each nonrepeating object is assigned one burst, and
each repeating object is assigned v bursts.

3. The 1122 position errors trk from the BATSE 3B data
set are resorted in a random order, and one is assigned to
each burst.

4. Each burst is displaced from its true position by a
random amount drawn from the probability distribution Bk
of equation (4). (In fact, we use the more accurate Fisher
beam function described in THBM96, but it is virtually
identical for a ,_ 60°.)

We truncate the number of bursts from the last repeating
source so that each mock catalog contains exactly 1122
bursts.

2.5. The Exposure Function

The sky exposure of BATSE is not quite uniform
(Fishman et al. 1994). The BATSE experiment does not
exclude any area of the sky, but due to blocking by the
Earth and detector gaps during passages of the so-called
South Atlantic Anomaly, some positions on the sky have a
reduced probability for burst detection. We quantify this by
the function h(P), the exposure function, defined as the
expected number of bursts per steradian. It is simply pro-
portional to the total exposure time that each patch of sky
has received. It is known a priori and is not obtained from
the observed burst distribution.

Because of problems due to the loss of the spacecreaft
tape recorders, the absolute efficiency has not been deter-
mined since the release of the IB data set. However, the
shape of the exposure function h is essentially independent
of time, and since the shape is all that matters for the
present analysis, we employ the 1B estimate (Fishman et al.
1994). This function h depends on declination only and is
independent of right ascension. This means that in equato-
rial coordinates, the multipole coefficients h_,, vanish except
when m = 0. The dominant deviation from uniformity is a
quadrupole (h2o/hoo _ 8.8%) depletion of bursts near the
equator due to the shadowing of the sky by the Earth. The
second largest anisotropy is a dipole moment (h_o/hoo ,_
4.5%) toward the Earth's north pole, due to the South
Atlantic Anomaly, which requires disabling triggers. Com-
pared to the shot noise, the higher multipoles (! > 3) are
negligible (alo/aoo < 1%), but for completeness, they have
nonetheless been included in our analysis.

We incorporate the effect of variable exposure into our
mock surveys as follows:

1. We compute the maximum value of the function hiP)
and denote it hma x.

2. Whenever a burst has been generated at a position i,
we accept it with a probability P = hli)/hma _ and reject it

with a probability 1 - P. In other words, we generate a
uniformly distributed random number u e [0, 1], and ifu >
h(_)/h .... then we generate a new burst position P and a new
random number u, repeating the procedure until we obtain
u < _(¢)/_,,,,,_.

The net result is that, when averaging over many mock
catalogs, there are on average h(_)dl) bursts in a solid angle
dO around i.

3. RESULTS AND DISCUSSION

Figure 1 shows the cumulative probability distribution of
the R-statistic for a range of models with v = 2. For each of
these models, we generated 104 Monte Carlo catalogs from
which we computed the R-statistic, producing a single curve
in the figure. These cumulative probability distributions
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FIG. l.--Monte Carlo results. The cumulative probability distribution
of our test statistic R is shown, as determined from Monte Carlo simula-

tions, for a range of repeater models. The models have a fractionf of the

bursts caused by repeating sources that are seen to burst twice (v = 2),

where, from left to right, f= 0, 2%, 5%, 10%, 15%, 20%, and 25%. The
hatched region contains the R-values smaller than that observed in the

BATSE 3B data set, so the probability that a model is consistent with the
data can be read off as the intersection of its curve with the vertical line. We

see that f= 2% is ruled out at approximately 95% confidence, since the

intersection takes place near the horizontal 5% line. (Note that since these
curves depend on N and ak, new Monte Carlo simulations must be made
to analyze a different data set.)

F(R,) show the fraction of the R-values that are smaller
than any one constant R,, so F(R.) is simply the integral
from zero to R, of the probability distribution for R. For
instance, the median R-value is the point R, at which
FIR,) = 0.5.

The first thing to notice about Figure 1 is that R behaves
as expected: as the repeater fractionfincreases, the distribu-
tion of R-values shifts further 1o the right. Second, the value
extracted from the real data, Rob s _ 0.3085, lies far to the
left in the figure, which means that the data contain no
evidence whatsoever for repetition. F(Rob,)_ 5% for the
model v = 2, f= 0.02, which means that this model pro-
duces such a low R-value only 5% of the time, i.e., that this
model is ruled out at 95% confidence. Models with higher
]:values are of course even less consistent with the data.

At first sight, it may appear disturbing that Rob,, is lower
than the typical values obtained for the null model f= 0
which has no repetition at all. Even if there are no repeaters,
R will only be as low as 0.3085 a mere 12% of the time.
Since no form of clustering could explain this (rather, a
contrived model with some form of '"anticlustering'" would
be needed), one is led to ask how unlikely it is that this

happened merely by chance. The answer is, of course, that if
the no-repetition hypothesis is true, then the probability of
finding an R-value this far out in one of the tails of the
distribution is 2 x 12%, i.e., it would happen about a
quarter of the time and thus should not be a source of
concern. A similar conclusion was reached by Hartmann &
Epstein (1989), who also found an unusually isotropic burst
sample in their analysis of Interplanetary Network (IPN)

positions from Atteia et al. (1987). In contrast, since wt
know a priori that repetition causes high rather than log
R-values, we should use a single-sided (rather than double-
sided) test when ruling out repeater models.

The results of repeating the Monte Carlo procedure fo_ a
two-dimensional grid of points in the (f, v) parameter space
are summarized in Figure 2. In agreement with Meegan e(
al. (1995), the contours are seen to be fitted accurately by
the hyperbolic profile (v - 1) oc 1/f. At 99% confidence, we
have

(v - l)f< 0.049, (12,

and at 95% confidence, we obtain (v- l)f< 0.018. F,u
comparison, the contour of models ruled out at 99% con-
fidence with the correlation function method applied to the
same data set is shown, (v - 1)f= 0.27 (Meegan et al. 1996)
It is seen that the method presented here tightens signifi-
cantly the constraints on any observable repeater popu-
lation. While no statistical analysis can disprove the
possibility of a very low repetition rate, the constraints on
simple repeater models discussed here are now so severe
that either recurrence is very rare among classical GRBs (in
contrast to what the earlier studies suggested), or it has a
very special pattern we can no longer find in the 3B data
although we did in lB. The latter interpretation appears to
be very contrived as long as we do not find theoretical
support for such a special pattern.

The straight lines in Figure 2 correspond to models wi'_h
a fixed number (1, 2, 4, 8, and 16) of repeating sources in the
data set. For instance, the ieftmost line corresponds to the
case in which all the repeated bursts are due to a single
source, so that the repetition would manifest itself as a
single cluster ofv bursts in the BATSE catalog. The fact that
this line intersects the 99% contour below v = 9 means that

our constraints are now so strong that not even a single
repeater with v = 9 is allowed. Similarly, even a single
sixfold repeater is excluded at 95% confidence.

3.1. How Robust Are the Results?

How robust are these results to changing variot_s
assumptions about the data? Playing the devil's advocate,
are there any types of errors that could produce artificially
strong constraints? Most types of data problems, fi_r
instance, neglected modulations in the exposure function,
would have the opposite effect and give weaker upper limits
on repetition, since they would create extra clustering in the
data. There are basically only two exceptions:

1. If the true exposure function fi is more smooth than
assumed;

2. If the location errors are underestimated.

To quantify the effects of the first possibility, we reran the
analysis with h constant. This is, of course, the most extreme
case possible, since there is nothing more uniform than a
uniform distribution, and quite contrived, since we know
that the South Atlantic Anomaly and Earth shadowing

must have some modulating effects. Nonetheless, the
changes were quite marginal, with the weakened limits
being iv - l)f< 0.064 at 99% confidence. In other words, a
problem of type 1 could at most weaken the limits from
0.049 to (I.064, i.e., by about 30%.

A more realistic source of concern is the second possi-
bility. Graziani & Lamb (1995) analyzed the distribution of
3B locations in comparison to the positions derived from
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the IPN 3 network and conclude that the systematic error
A0o of the 3B data should be ~ 4 ° instead of the advertised
1._6.In addition, there may be correlations in the data that
suggest a brightness dependence for the systematic error,
instead of the constant value suggested by Meegan et al.
(1996). The studies by Graziani & Lamb (1996) did not take
systematic effects in the IPN localization method into
account and also do not incorporate the fact that some IPN
locations are based upon the earlier BATSE 2B locations
and thus may be biased against the 3B locations. Although
we tend to agree more with the error budget prescribed by
the BATSE Team, this is an unsettled question, and we have
therefore studied the effect of larger errors on our repeater
limits. For simplicity, just to estimate the magnitude of the
effects, we maintained a constant systematic error A0o (as
suggested for the 3B data) and repeated the entire analysis
for A0o = 2 °, 3°, 4 °, and 5°. To be maximally conservative,
we took fi constant as well, and we found that for v = 2, the
99% upper limit on the repeater fraction scaled approx-
imately as

f < 0.06(60o/1.6) 0.` . (13)

In other words, even if the true systematic location errors
were as high as 5°, our limits would only be weakened by
less than a factor of 2.

3.2. Conclusions

In summary, we have sharpened previous limits on GRB
repetition by analyzing the improved BATSE positions of

the 3B catalog (Meegan et al. 1996) with a new statistic
based on the angular power spectrum. This method is more
powerful than the NN statistic or correlation functions
because it is in a sense a global method (e.g., Hartmann et
al. 1995). The presence of clustering (on any scale) some-
where on the sky reduces the density of sources everywhere
on the sky (relative to an isotropic distribution). Any
method that utilizes the impact of clustering on all angular
scales is more sensitive to clustering than local methods,
such as NN statistics that only measure neighbor excess
very close to a given source, or angular correlations. The
appearance of clusters other than those occurring by chance
quickly leaves a mark on the overall, global angular power
spectrum. Using this effect, we find an amazing isotropy of
bursts, which is hard to satisfy with any model other than
that of nonrepeating sources, providing strong evidence
against the Galactic models currently under consideration.
It was believed that spherical harmonic expansion would
not provide a good tool for repeater studies (Lamb et al.
1994) because the power is spread over many high harmo-
nics. We emphasize that the R-statistic introduced here
sums over power in all modes, and the Monte Carlo simula-
tions demonstrate clearly that this approach in fact does
provide a very powerful tool for clustering studies.

As shown in Figure 2, the bulk of the previously allowed
parameter space is now ruled out, and the new constraints
are so tight that 95% confidence, no more than 2%/2 -- 1%
of the burst sources can have repeated in the data set,
assuming that repeaters have a brightness distribution
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typical of the entire catalog. Continued burst observations
would allow further improvements in studies of this kind,
but to really advance the field we must develop new mis-
sions that provide much better GRB localizations. While
the forthcoming High-Energy Transient Experiment mis-
sion (e.g., Ricker et al. 1992) may provide very accurate
localizations, the event rate of HETE will probably be too
low for recurrence to be detected. NASA has initiated

several concept studies for new GRB missions, most recog-
nizing the need for accurate positions• Future GRB obser-

vations may free us from the need to use statistical meth_,d
to answer such basic questions as burst recurrence, but fo
now we have no choice. The angular power method pre
sented here should serve us well until the launch of a nev

generation of GRB experiments.
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